8

83:tndri

$\frac{5}{6} \frac{2}{6}$ University of
MANCHESTER Technology
Facilities Council

Imperial College London

Synergistic utilisation of INformatics and Data centRic Integrity engineering

Mahmoud Mostafavi
(on behalf of David Knowles)

Nuclear Academics Meeting

Who?

High Temperature Centre Est 2006

Science and Technology Facilities Council

Aim

- Create a coherent digital framework, populated by modular multiphysics, multi-scale models. This will replace time consuming and extensive physical testing associated with traditional approaches; enhance speed and efficiency

Delivery

Experiments

Example 1: From Melt pool to creepesindri

- Solidification

Physics-based model

\&isindri

- Mechanical response

SINDRI-PARTNERSHIP.AC.UK

Engineering model

- Mechanical properties from microstructure
- Ageing behaviour prediction
- Irradiation damage behaviour prediction
- New materials behaviour prediction
- Forecasting future behaviour

Gaussian Process

Enduring impact

- SindriToolbox

- Knowledge transfer
- Shared best practice, training tools and tutorials
- Tools usage for all researcher
- Source code Management
- Git hosted, clear verification/validation, release control, harmonized architecture
- User friendly tools
- Simple software environment
- Easy implementation for test of cross-comparison

Future work

- PWR specific potential issues
- Translating AGR knowledge to an AMR asset
- Move towards in-silico qualification of new process (e.g. repair)
- Reduce the cost of mitigating damage mechanisms (creep, creep fatigue, fracture, stress corrosion cracking)

Priorities

- Bring on the regulator with us
- Leverage UK investment in data science (e.g. through Alan Turing)
- Identify opportunities outside EDF (e.g. in fusion and AMR)
- Plan for adapting to a changing landscape

