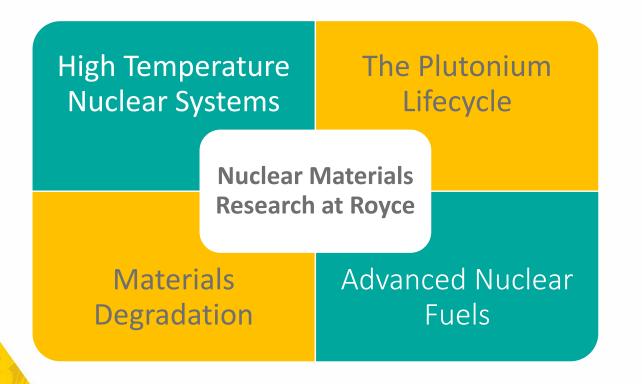
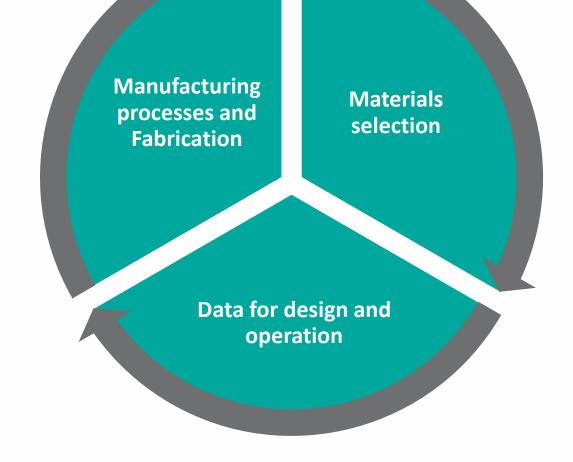
NUCLEAR MATERIALS

Research Area Leads:


Prof. Abbie Jones and Dr. Anna Widdowson

Research and Business Engagement Manager: Dr. Andrew Bowfield HENRY ROYCE INSTITUTE



NUCLEAR MATERIALS

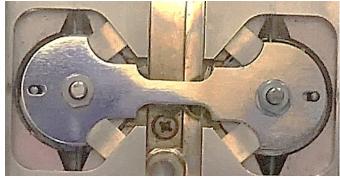
Nuclear Materials Research

ROYCE

Nuclear Materials Partners & Technology Platforms


The University Of Sheffield.	MANCHESTER 1824 The University of Manchester	UK Atomic Energy Authority	NATIONAL NUCLEAR
Advanced Characterisation to Understand Radiation Damage in Materials	Irradiation Environments (DCF) Fuels and Irradiated Materials Analysis (Hub)	Non-Actinide Irradiated Materials Handling, Characterisation, ³ H and Testing (MRF)	Irradiated Materials, Fuels and Actinides Handling and Characterisation

Technology Platform updates Irradiation Environments (DCF)


- Accelerator hall radiation shield enhancement
 - EMITS (Enhancing Materials Irradiations through Thoughtful Shielding) project (NNUF funded)
 - Dual-beam end station

- Commissioning of the new EELS/SIMS system (Royce funded)
- A new facility to perform synergistic irradiation thermomechanical testing: in-situ tensile test rig
- New 5 year UKNIBC (UK National Ion Beam Centre) National Research Facility grant has been awarded to University of Manchester, University of Huddersfield and University of Surrey.

NewTec MT1000 adapted loading rig

Sample design and loading

Technology Platform updates Fuels and Irradiated Materials Analysis (Hub)

NNUF 2 – Alpha active electron microscopy facility

ROYCE

Graphite and Irradiated Materials laboratory

https://my.matterport.com/show/?m=wnr9XZmESXn&brand=0

Technology Platform updates Non-Actinide Irradiated Materials Handling, Characterisation, ³H and Testing (MRF)

- UKAEA Fusion Foundation funded Hotcell extension in progress for delivery 2024
 - Incorporating in cell machining and testing capability
 - 20kN hydraulic load frame with high T capability to 900C with DIC and 1100C without
- Good facilities usage: 1300 total instrument days including internal UKAEA use during FY2022-23
- Irradiation campaign with ORNL HIFR
- NNUF2a funded PFIB, TEM, high vacuum DSC installed and commissioning
- UK certification of generic state 2 remote handling systems for high activity work

Royce Materials Challenge Accelerator Programme

Materials 4.0 Landscape:

ROYCE

- University of Manchester (£97k):
 - "Enhanced Materials Production In Radiation Environments (EMPIRE)"

Degradation in Structural Materials for Net-Zero Landscape:

University of Manchester (£66k):

• "Understanding the degradation of nuclear graphite bricks and its impact on brick structural integrity"

Royce Materials Challenge Accelerator Programme

Fusion Materials Roadmap

UKAEA (x4 awards, total of **£437k**):

- "A pilot study on solid-state diffusion bonding of tungsten to steel for the STEP divertor components"
 - Achieved a high-strength joint between tungsten and steel (grade 91) using a very think Nickel interlayer
 - The interlayer reduces residual stress and prevents oxidation during bonding in air, thus enhancing joint quality and reliability
 - The absence of oxide formation during diffusion bonding in air represents a significant success
- "Characterisation of Industrially-Relevant ODS Steels for Fusion"
- "Hybrid Approach to SiC/SiC Technologies and Engineering in Fusion (HASTE-F)"
 - "Fusion-grade" composites produced achieving densities >95% in half the manufacturing time. Mechanical properties in some cases surpassed performance expected for "nuclear-grade" SiC/SiC
 - Invention disclosure has been submitted to the UKAEA IPMO, currently being fast-tracked filing a joint UKAEA-NCC (National Composites Centre) patent on HASTE-F
 - Successful demonstration of HASTE-F as a manufacturing technology has led to further £175k funding from NCC to scale-up the process
- "Joining of SiC/SiC for Engineering Applications in Fusion (JOSEAF)"
 - High-purity, SiC/SiC-to-SiC/SiC joints produced, demonstrating good strength at temperatures up to 800°C
 - W coatings applied to SiC/SiC composites via CVD:
 - CVD coatings >100 μm were found to debond during processing. CVD coatings <100 μm failed during thermal cycles (400-600°C)
 - Early trials on PVD W coatings on SiC/SiC show good adhesion after thermal cycles between 600-1000°C

Researcher funded access for Royce facilities

- Open to all researchers:
 - Higher education institutions
 - Research technology organisations
 - Industry, including SMEs
- Funding available to support subsidised access
 - Schemes advertised through website, newsletters and social media
- Equipment database on website: <u>www.royce.ac.uk</u>
- General enquiries: <u>info@royce.ac.uk</u>

ROYCE

HENRY ROYCE INSTITUTE

GET INVOLVED...

Find out more: royce.ac.uk

Enquire: info@royce.ac.uk

NUCLEAR MATERIALS

Follow Royce: **Oroyceinstitute**

