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Introduction to NEURONE

Authority

Goal: deliver an advanced, high-temperature steel for fusion (and fission) via novel
microstructure and process development coupled with verification with irradiation testing.

* Following on from NEUIRR project (2016 — 2020)

« NEURONE originally proposed as a five-year programme valued at £10m.
« Brings together 10 organisations across academia and industry.

« Submitted to BEIS in 2021.

« Pending the outcome of the DESNZ alternatives funding stream, UKAEA is self-funding
NEURONE for ~£1m in FY 23/24.
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The need for advanced steels

Authority
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https://www.royce.ac.uk/content/uploads/2021/09/UK Fusion Materials Roadmap Interactive.pdf
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The need for advanced steels
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NEURONE in year 1 g
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Authority
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NEURONE in year 1 i
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Year 1 outputs

Authority

Optimisation of chemistry and TMTs for two down selected Eurofer and F82H derivative
ARAFM steels.

Neutron irradiated steels produced (~up to 0.1 dpa).

Completion of a He implantation and dual beam He/Fe implantation at DCF.

TEM and APT of the baseline and implanted ARAFM steels complete.
Commissioning of in situ creep capability on the MC40 at University of Birmingham.

Post-doc in place developing atomistic models informing on precipitate/interface stability
under irradiation.

Ingot casting/segregation model at tonnage scale for ARAFM steels complete.

200kg of VIM ARAFM steel produced!
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Future

WP8 Cluster dynamics simulations Authority
WP7 Atomistic & mesoscale modelling

WP6 Development and mechanistic understanding of NiAl ferritic superalloys

WP4 Creep testing
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Ultimately, NEURONE is much bigger than simply developing and irradiating steels. It is a chance to
build an advanced nuclear steels community in the UK — very much a growing demand for GenlV (inc.
AMR) and fusion sectors.
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Thanks for listening

Dr David Bowden

Materials Science and Engineering Group Leader
UK Atomic Energy Authority
david.bowden@ukaea.uk
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