UK Nuclear Physics Update (2023)

• UK Nuclear Physics Science includes research into:

- Nuclear Structure, Nuclear Reactions & Nuclear Astrophysics
- Hadronic Physics
- Nuclear Theory
- Applications and Societal Benefits through instrument development and nuclear data application.
- Also Involvement in some Network grants (UKNDN ; Early Diagnosis Network ; NuSEC Network)

'Core' UKRI funding comes via STFC (tensioned vs Particle Physics and Astronomy.

Paddy Regan: p.regan@surrey.ac.uk Paddy.regan@npl.co.uk

UK Nuclear Physics Update (2023)

- UK Nuclear Physics Science include experimental input investment, instrumentation and manpower for:
 - Nuclear Structure, Nuclear Reactions & Nuclear Astrophysics
 - Radioactive Ion Beam Facilities: FAIR (Germany) ; CERN-ISOLDE (Switzerland); RIBF-RIKEN (Japan) ; TRIUMF (Vancouver, Canada); GANIL (France).
 - Stable beam facilities inc. Argonne National Lab (USA); Jyvaskyla (Finland) ; Legnaro (Italy); Gran Sasso (Italy), others...
 - Hadronic Physics
 - (nucleon / parton distributions including J-LAB (Virginia, USA)
 - Hot, dense nuclear matter) including ALICE (CERN)

Some 'Big' Physics Questions?

- 1) What are the fundamental building block of matter ?
- 2) How can you see 'inside' an atomic nucleus / nucleons?
- 3) Where & when were the stable elements formed?
- 4) How do we measure very long / short radioactive decays?
- 5) What are some of the applications of nuclear science?

1 1 H	IUPAC Periodic Table of the Elements											18 2 He					
1,007, 1.009	2		Key:									13	14	15	16	17	4.003
3	4		atomic num	ber								5	6	7	8	9	10
Li	Be		Symb	l								В	C	N	0	F	Ne
Ethium	beryllum		name									boron	carbon	nitrogen	oxygen	fluorine	neon
44	12		and and a statistic									12	1200, 1202	[14.00, 14.01] 4E	(15.36, 16.00)	19.00	10
No	Ma											A1	Ci.	D	e	CI	Ar
IN 21	magnestum											Al	sicon	phosphosus	athr	chiorine	MODE
22.99	(24.30, 24.31)	3	4	5	6	7	8	9	10	11	12	26.98	(28.08.28.09)	30.87	(12.05.32.00)	[35.44, 35.66]	38.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
38.10	do.ce	scandium 44.96	11anium 47.87	vanadium 50.94	dhromium 52.00	manganese 54.94	80.05	cobalt 56.93	nickel 58.69	63.55	zinc 65.38(2)	galium 69.72	gemankm 72.63	arsenic 74.92	78.950)	promine (79.90, 79.911	krypton 63.60
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aq	Cd	In	Sn	Sb	Te	1	Xe
rubidium	strontium	yttnum	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	paladium	silvor	cadmium	indium	tin	antimony	telurum	iodine	HEROT
55.47	87.82	65.91	91.22	92.91	86.96(2)		101.1	102.0	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.0	131.3
Co	Ba	5/-/1	12	To	14	Po.	00	1.	78	A	- Ha	TI	Dh	03	Bo	00	De
US	batum	lanthanoids	hathium	1d tentalum	turnesten	henam	OS	indum	riatioum	Au	ng	thalium	PD	bismuth	PO	AL	redon
132.8	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	[204.3. 204.4]	207.2	208.0	1000		
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	adircids	Rf	Db dubnium	Sg	Bh	Hs	Mt	Ds damstattum	Rg	Cn	Nh	FI	Mc	LV	TS	Og
			1	60			40										
		10	Co	Dr	Nd	Dan	Cm	Eu	Cd	Th	Du	Ha	E.	Tm	Vh	1	
		La	cetum	PT	DVI	rm	Sim	EU	addinium	terbium	dysemsium	holmium	ettim	thulium	1D viterbarn	LU	
		138.0	140.1	145.9	144.2		190.4	152.0	197.3	158.9	162.5	164.9	167.3	168.9	175.1	175.0	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	U	Nn	Pu	Am	Cm	Bk	Cf	Es	Em	Md	No	Lr	
		actinium	thorium	protectinium	uranium	neptunium	plutonium	americium	autum	Derkelium	californium	einsteinium	fermium	mendelevium	nobeium	lawrendum	
			202.0	231.0	238.0												

Size of the UK community

- There are ~70 academics / faculty staff @ 12 institutions carrying out nuclear physics research
 - Includes appointments via STFC ERF, UKRI-FLF, Roy. Soc Fel.
 - Almost all are University-based researchers
- ~90 PhD Research students across the community
 ~40 50 funded by STFC quota plus a few iCASE etc.
- Nucl. Phys. Advisory Panel Chair J. Dobczewski (York)
- Nucl. Phys. Grant Panel Chair K. Flanagan (Manchester).

* UK Nucl. Phys. Community annually (10-11 Jan 2023 in IoP London) * IoP Nucl. Phy. Conf. held each April (U. York, April 2023)

Nuclear Physics Community Meeting Jan 2022

Members of STFC - Nuclear Physics Avisory Panel (NPAP)

Jacek Dobaczewski (chair) Rachel Montgomery Philippos Papadakis Pascal Reiter David Sharp Paul Stevenson University of York University of Glasgow STFC University of Edinburgh University of Manchester University of Surrey

Engaging with:

Science Board Liaison: David Ireland, University of Glasgow PPAP Chair: Matthew Needham, University of Edinburgh PAAP Chair: Sergey Burdin, University of Liverpool

The Nuclear Physics Strategy document

- Scope and range of Physics
- Current projects
- Future projects
- Other issues
- 10 year horizon
- Last one published 2019
- Update one due out later this year (2023).

https://stfc.ukri.org/about-us/how-we-are-governed/advisory-boards-panelscommittees/nuclear-physics-advisory-panel/

The Physics of Nuclei

uclear Matter and

lucleosynthesis

2017 NuPECC Long Range plan. Chapter 6. APPLICATIONS AND SOCIETAL BENEFITS (renewal due out 2024 with lots of UK input)

NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics

- Energy production: fission, fission.
- Health applications
 - therapy; imaging; radioisotope production; theranostics, etc.
- Radioprotection / health physics.
- Environmental radioactivity, space applications, climate science.
- Cultural Heritage science.
- Nuclear security; counter terrorism; Nuclear forensics.
- Materials science, nanotechnology.

http://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf

STFC Nuclear Physics Grants Panel (NPGP)

Nuclear Physics Grants Panel Membership 2023

Name	Institute	Expertise
Professor Kieran Flanagan (Chair)	Manchester	Nuclear Structure
Dr Nara Singh Bondili	UWS	Nuclear Structure
Prof. Jens Jorgen Gaardhoje	Copenhagen	Hadronic Physics
Dr Liam Gaffney – Liverpool	Liverpool	Nuclear Structure
Dr David Hamilton	Glasgow	Hadronic Physics
Professor Morten Hjorth-Jenson	MSU/Oslo	Nuclear Theory
Dr Marc Labiche	Daresbury Lab	Nuclear Structure
Professor Alison Laird	York	Nuclear Astrophysics
Dr Judith McGovern	Manchester	Nuclear Theory
Professor Zsolt Podolyak	Surrey	Nuclear Structure
Prof. Dan Watts	York	Hadronic Physics

Outcome (STFC) Statistics from previous rounds

Measure	2011	2014	2017	2020
Number of proposals	8	8	8	8
Number of institutes	10	10	11	12
Number of scientific themes	34	35	35	33
Academics – Number (Requested)	46	52 (58)	53 (65)	45 (66)
Academics - Average FTE	14.5%	11%	9%	6%
Academics – Total FTE per year	6.3	5.6	4.5	2.8
PDRA – Number	29	21	27	23
PDRA - Total FTE per year	18.3	16.1	18.2	19.0
Core Posts – Number	11	12	9	9
Core Posts - Total FTE per year	8.3	7.9	6.8	6.5
Cross Community - Number	13	14	16	12
Cross Community - Total FTE per year	12.1	10.3	11.3	10.3
Number of Studentships	2	1	3	3
Technician - Total FTE per year	-	2.1	2.9	3.9
Total Number of FTE per year	47.0	43.0	46.7	45.6

TOTAL PDRAs including CORE RAs: 2017: 21.78 FTE / year 2020: 21.4 FTE / year

Impact from UK nuclear physics

Roadmap for existing projects and future opportunities

	2021/22	2022/23	2023/24	2024/25	2025/26	2026/27	2027/28	2028/29			
	ALICE exploitation										
	Jlab exploitation										
Hadronic Physics		Jlab 2			Jlab2 exploitation						
	EIC R&D			EIC							
							NG ALICE				
	2021/22	2022/23	2023/24	2024/25	2025/26	2026/27	2027/28	2028/29			
	ISOL-SRS exp	oloitation									
	NuSTAR at F	AIR			FAIR SFRS						
	AGATA			AGATA expl	oitation		AGATA 4π				
Nuclear Structure 8		FAUST @ FR	IB			n at FRIB					
Actrophysics		STAR R & D	STAR @ RIKE	N Exploitat			on at RIKEN				
Astrophysics		JYFL MARA L	EB + Array			Exploitation at JYFL					
		ISOL-2 R & D		ISOL-2 @ ISO	OLDE						
							EPIC/EURIS	CL			
							NuSTAR Up	grade			
	2021/22	2022/23	2023/24	2024/25	2025/26	2026/27	2027/28	2028/29			
Nuclear Theory		Neutrino-nu	cleus								
Nuclear meory		Fission									
		ongoing		future		exploitation		horizon			
						exploitation	ploitation at other facilities inc. GSI				

Examples of 2 STFC / UKRI funded nuclear phsyics detector projects:

1) Current: FATIMA

2) Future: FAUST

Design build & commission precision instrumentation (e.g. AGATA; J-LAB; ALICE@CERN; NuSTAR@FAIR; ISS@CERN-ISOLDE) and use them for UK 'buy in' at labs around the world... e.g The UK Fast TIMing Array (FATIMA) – 36 LaBr₃(Ce) gamma-ray spectrometers.

M. Rudigier, Zs. Podolyák, P.H. Regan et al.

Nuclear Inst. and Methods in Physics Research, A 969 (2020) 163967

FATIMA contributes to answering some very 'big nuclear physics' question

Current setup - FATIMA

- FAst TIMing Array of 36 LaBr₃(Ce) crystals
- Brighton, Surrey, IFIN-HH, Cologne, Daresbury, Madrid, Manchester...
- 6 IFIN-HH modules at GSI
- Extremely stable VME electronics > 1yr

M.Rudigier et al., NIM A 969, 163967 (2020)

Radiation Physics and Chemistry xxx (xxxx) 110234

Contents lists available at ScienceDirect

Radiation Physics and Chemistry

journal homepage: www.elsevier.com/locate/radphyschem

⁹⁶Pd₅₀ I^{π}=8⁺ isomer, H. Mach et al., PR**C95** 014313 (2017), T_{1/2} (6⁺) = 6.3(6) ns T_{1/2} (4⁺) = 1.0(1) ns T_{1/2} (2⁺) < 17 ps

8+

Commissioning the FAst TIMing array (FATIMA) at FAIR Phase-0: Half-lives of excited states in the N = 50 isotones ⁹⁶Pd and ⁹⁴Ru

S. Jazrawi^{a, b, *}, A. Yaneva^{c, d}, M. Polettini^e, B. Das^f, P.H. Regan^{a, b, **}, M. Górska^c, B. Cederwall^f, J. Jolie^d, H.M. Albers^c, M.M.R. Chishti^a, A. Banerjee^c, N. Hubbard^{c, g}, A.K. Mistry^{c, g}, M. Rudigier^g, *Jazrawi et al.*

The Future of FATIMA – IDATEN@ RIBF > 84 LaBr₃ detector gamma-ray array made up of IDATEN (UK) + KHALA (S. Korea) + RIKEN

NANA for spent nuclear fuel assay: ^{134,7}Cs reactor products. ¹³⁴Cs $\rightarrow \gamma$ -ray coincidences; ¹³⁷Cs \rightarrow single transition (662 keV).

FRIB Accelerated-beams for Understanding Science and Technology

FALST

FAUST – Si backed with CsI provides stopping required for high-energy charged particles

The STFC Nuclear Security Science Network (NuSec)

- Novel imaging techniques, including compact gamma & neutron imaging systems; cosmic ray muon imaging of large objects.
- Radiation detection, detector development, digital pulse processing; new materials for radiation detectors.
- Advanced detection methods for nuclear fuel cycle monitoring.
- Robotics and remote inspection technologies.
- Non-proliferation technologies.

For further information, see: <u>www.nusec.uk/</u> and p.sellin@surrey.ac.uk

University of Manchester: STEFF @ n_TOF Spectrometer for Exotic Fission Fragments: *A.G. Smith, T. Wright, N. Sosnin, et al.*

Goal:

Provide data for NEA HPRL entry on
 ²³⁵U and ²³⁹Pu Prompt Fission γ-Rays

Realisation:

 Measure fission with STEFF and corresponding γs with NaI and LaBr₃ detectors

²³⁵U target

²³⁹Pu target

Fission neutron removal

N. Colonna et al., "The fission experimental programme at the CERN n TOF facility: status and perspectives", *Eur. Phys. J. A (2020) 56: 48. DOI: http://dx.doi.org/10.1140/epja/s10050-020-00037-8*

Toward $^{237}Np(n,f)$ and $^{238}U(n,f)$ reference cross sections

- NPL Low scattering area 18m x 18m x 26m
- Well known neutron fluence (within 2%)

TFGIC and targets from JRC (Geel)

<u>Results are promising, agree with current libraries, more work</u> <u>needed to:</u>

- Improve reproducibility of the fission target position
- reduce error bars and more energies for ²³⁸U → more neutrons needed (working on this with AFCP)
- 2/3 of the GEN-IV reactors are fast reactors
- Fast ²³⁷Np(n,f) ²³⁸U(n,f) are better reference cross section than ²³⁵U(n,f)
- NPLabsolute cross section will contribute the evaluation effort toward making ²³⁷Np and ²³⁸U standards

UK NP Radioactive Gas Metrology

UK Nuclear expertise in

- A) Neutron activation facility & source prep;
- B) Gas metrology, transport and engineering;
- C) Gamma-ray and electron spectrometry;
- D) Nuclear data analysis and interpretation.

Clear, direct impact in:

- 1) Energy & Environment: standardisations of radioactive Krypton. Real time signatures for reactor criticality.
- 2) Security & Resilience: New methodologies developed in collaboration with AWE & CTBTO for **radioactive Xenon** weapon signatures.

Production and measurement of fission product noble gases

Matthew A. Goodwin^{a,b,°}, Steven J. Bell^c, Richard Britton^d, Ashley V. Davies^a, Marc Abilama^c, Sean M. Collins b, e, Robert Shearman e, Patrick H. Regan b, e

AWE Aldermaston, Reading, Berkshire, RG7 4PR, UK epartment of Physics, University of Surrey, Guildford, GU2 7XH, UK tional Physical Laboratory, Teddington, Middlesex, TW11 OLW, UK Provisional Technical Secretariat, CTBTO, Vienna, Austria

<u>PR</u>oduction of high purity <u>I</u>sotopes by mass <u>S</u>eparation for <u>M</u>edical <u>Ap</u>plications

https://www.prismap.eu/

Molecular radiotherapy and theranostics

- Recent successes for ²²³Ra and ¹⁷⁷Lu has renewed interest for molecular radiotherapy.
- Search for new suitable radioisotopes continues...
- Over 3000 radioisotopes synthesised in the lab only a fraction currently used for medical procedures.
- Limited by:

Physical characteristics e.g. $T_{1/2,}$ Production purity O \rule{O} \rule{O}

