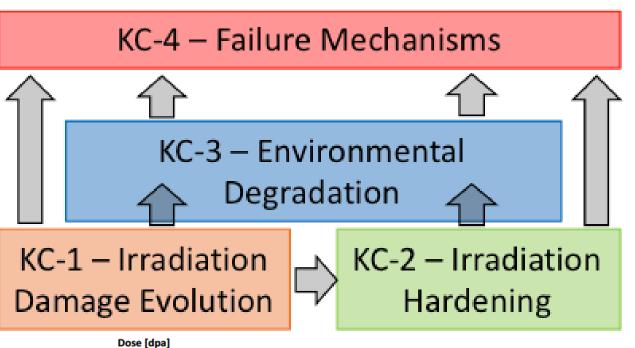


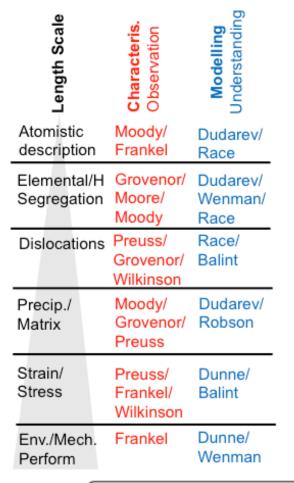
MIDAS – Mechanistic understanding of Irradiation Damage in fuel ASsemblies

Philipp Frankel

UK Nuclear Academics Meeting 2023 6-7 September 2023

Key Challenges and Expertise




Independent Advisory

Board

(academia

and industry)

Expertise and People

Management Group KC-1: Race **Preuss** Irradiation progress monitoring Damage KC-2: Preuss **Balint** Irradiation Hardening KC-3: Grovenor of KC1-4 Wenman Environmental Degradation KC-4: Dunne Frankel Failure

Mechanism

Impact Monitoring Working Group

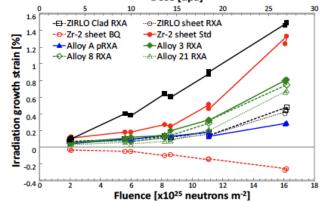
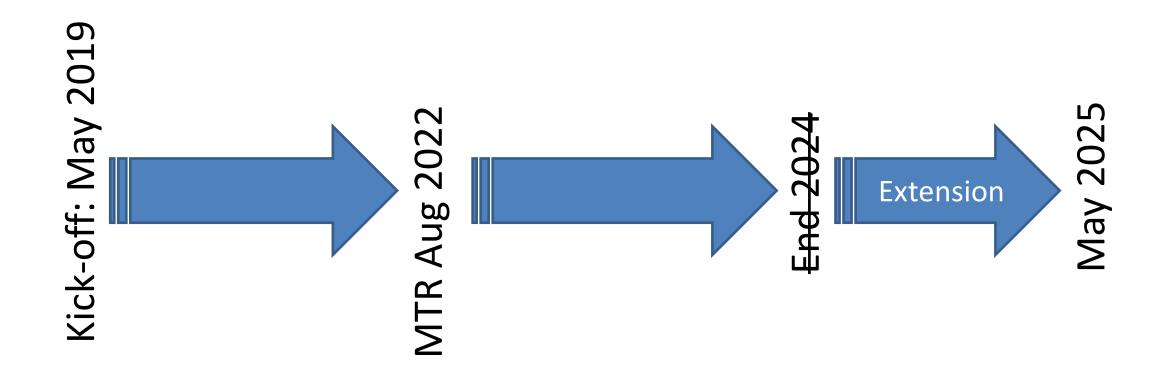


Figure 4: Irradiation growth behaviour of BOR-60 neutron irradiated samples provided to MIDAS

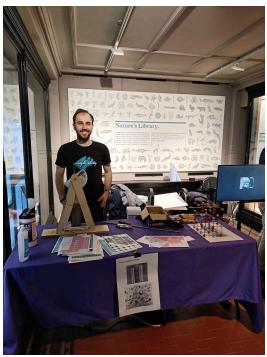


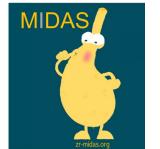
MIDAS Timeline

Staff Update

Doyin Mansell – Programme Manager since June

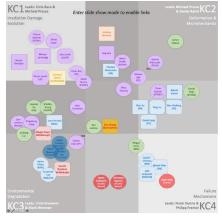
- Mia Maric RR/UoM Research Fellow in Nuclear Cladding
 - Materials
 - Started July
 - Microstructural evolution with hydrides and irradiation
 - Characterisation and Simulation




Public Engagement - Outreach

- Manchester Science Festival March.
- UoM Community festival June
- Bluedot Festival July

Where are we now?


Initial phase Phase 2 now **Activities** Direct use of BOR 60 samples Direct use of BOR 60 samples **KC1** – Irradiation Damage Evolution H⁺ + Annealing **Irradiation Damage Evolution** Characterise BOR-60 samples Defect stability/evolution Model loops + Modelling – fundamentals Annealing experiments Comparisons with proton/ions - Influence of chemical segregation chemistry KC2 – Effect of Irradiation on **Effect of Irradiation on** Indentation+ **Deformation & Micromechanics** formation & Micromechanics Use of proton irradiated samples Use neutron irradiated samples Cantilevers Modelling - recreate observed behaviors In-situ loading rig (Creep) → Modeling **Environmental Degradation KC3 – Environmental Degradation** MUZIC follow-on Autoclave Close collaboration with MUZIC-3 Test active samples **Develop and commission autoclaves** commissioned In-situ corrosion/proton Small scale KC4 - Failure Mechanisms 4 - Failure Mechanisms testing at MRF Tests & modelling - non-irradiated mater Pellet cladding interaction failures (SCIP) Effect of hydrides & fatigue (DHC) Effect of irradiation on failure PCI sample Develop capability from Studsvik

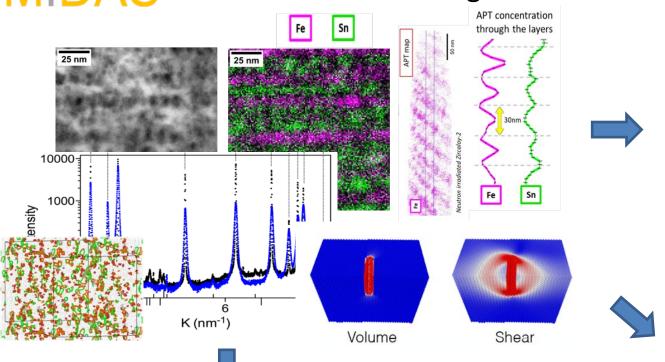
Highlights:

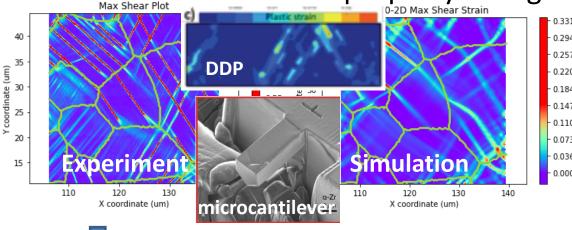
- Extension to 2025
- Cross-institution collaborations
 - Strain localization: HR-DIC vs CPFEM
 - TEM, XRD, APT + multi-scale modelling
- Active facility development/use
 - NNL, MRF, Royce & DCF
- Training & workforce pipeline
 - Fellowship training for PDRAs
 - PDRAs/PhDs to industry
 - Seconded researchers e.g. UKAEA, Jacobs

Storage + initial prep. (cutting/electropolish) Small coupons 3mm TEM foils

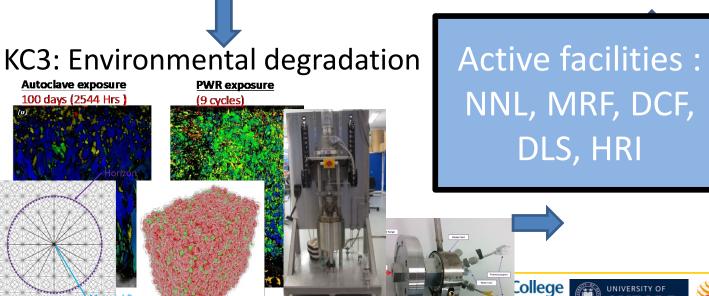
Active Cryo-FIB

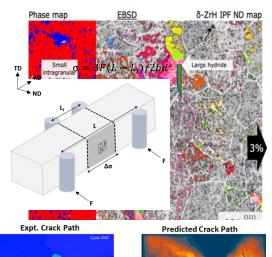
Lift outs

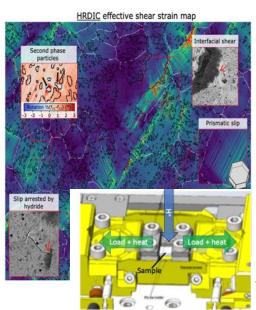



MIDAS

KC1: Irradiation damage evolution





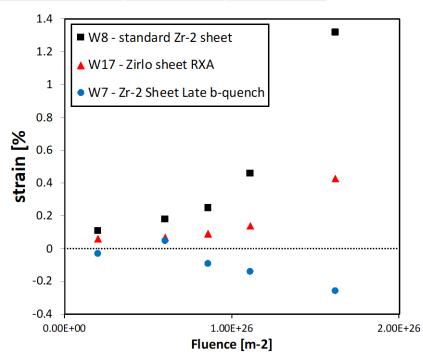

KC2: irradiation Induced property changes

KC4: Failure mechanisms

Use and movement of samples

BOR60 samples now in use:

Alloy	XRD	TEM (FIB foil)	TEM (electropolished)	APT	Micro-cantilever	NanoHardness	Corrosion	H-charging	Annealing
ZIRLO	✓	3 fluences*	In-progress	3 fluences*	Ready for test	3 fluences	2023		2023
Zr-2 (W8)	✓	3 fluences*	In-progress	3 fluences*	Ready for test	3 fluences	2023	trials	2023
Zr-2-BQ (W7)	✓	3 fluences*		3 fluences*		3 fluences	2023		2023
Alloy 21 (W13)	✓	In-progress							
Alloy 3 (W10)	✓	In-progress							

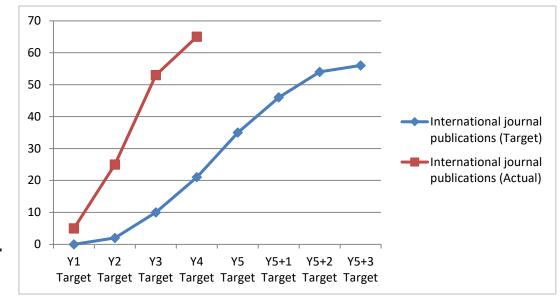

^{*}Including Cryo-prep. trials

Baseline analysis:

Alloy	XRD	EBSD	TEM	APT	Micro-cantilever	Corrosion
ZIRLO	✓	✓	✓	✓	✓	✓
Zr-2 (W8)	✓	✓	✓	✓	✓	In-progress
Zr-2-BQ (W7)	✓	✓	✓	✓	✓	
Alloy 21 (W13)	✓	✓	✓	2023		
Alloy 3 (W10)	✓	✓	✓	2023		

Proton irradiated samples:

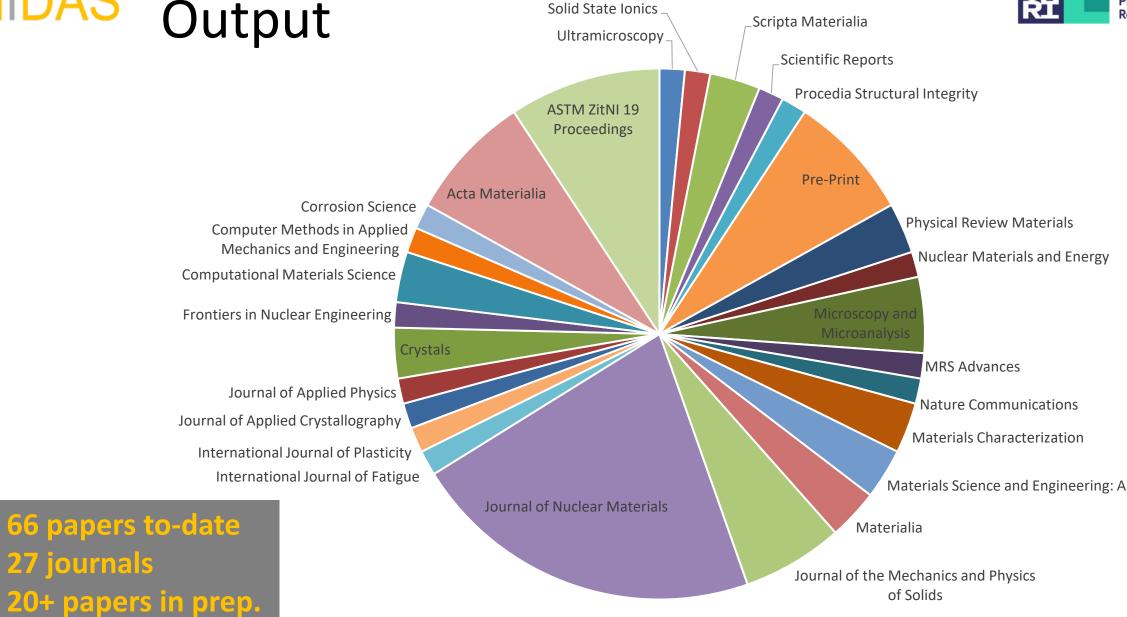
Alloy	XRD	S-XRD	Nano-hardness	HR-DIC	Micro-cantilever	Corrosion	APT
ZIRLO	✓	✓	✓	✓	✓	In-Progress	✓
Zr-2 (W8)	✓	✓	✓	✓		2023	✓
Zr-2-BQ (W7)							
Alloy 21 (W13)	In-progress						2023
Alloy 3 (W10)	In-Progress						2023


Output

Our KPI was to have a total of 21 peer-reviewed journal publications by this point in MIDAS. We have achieved over three times this number.

Five Key Recent publications

- Untangling competition between epitaxial strain and growth stress through examination of variations in local oxidation M. Yankova, et al. (Manchester) – *Nature Communications*
- Zirconium hydride phase mapping in Zircaloy-2 cladding after delayed hydride cracking
 - A.W. Colldeweih, et al. (PSI) *Materialia*
- Simulation of crystal plasticity in irradiated metals: A case study on Zircaloy-4 C. Hardie, et al. (Imperial, Manchester, UKAEA) – Acta Materialia
- Preliminary Atom Probe Tomography Evidence for Hydrogen Trapping at a 6-Nb Second Phase Particle in a **Neutron-irradiated Zirconium Alloy**
 - B.M. Jenkins et al. (Oxford, UKAEA, MPI Eisenforschung, imperial, UNSW) *Microscopy and Microanalysis*
- Microstructural complexity and dimensional changes in heavily irradiated zirconium A.R. Warwick et al. (UKAEA) – *Physical Review Materials*



27 journals

MIDAS Output

Thank you

