

Nuclear medicine plans and collaborations @ Nuclear Futures Institute, Bangor University

Nuclear academics meeting Coventry University (London) 2023

Dr Tim Smith and Dr Mark Ogden

Nuclear Medicine

Nuclear medicine: medical specialty that uses radioactive tracers (radiopharmaceuticals) to assess bodily functions and to diagnose and treat disease

Nuclear medicine imaging: detection of radiation introduced into the body and accumulated in regions of interest often using targeting molecules to which radionuclides are attached

Nuclear medicine therapy: administration of radionuclides/targeted radionuclides to destroy tumour or normal tissue

Radionuclide categories used in nuclear medicine

Emission	Range	LET	Examples (range in tissue)	Use
γ/positron			⁸⁹ Zr, ²⁰³ Pb*	Imaging
β	Up to 10 mm	low	¹⁷⁷ Lu (1mm), ¹⁹⁸ Au, ⁹⁰ Y (10mm)	MRT
α	Up to 100µm	high	²¹² Pb*, ²²³ Ra	MRT
Auger electrons	Up to 5µm	high	¹²⁵ I, ⁸⁹ Zr, ¹¹¹ In	MRT

*theragnostic pair

Nuclear Medicine Imaging

Single photon emission computed tomography (SPECT)

Usual isotope is ^{99m}Tc (140keV (low easily stopped) Many tracers e.g. Kidney function: ^{99m}Tc-

DTPA dynamic scan

Positron emission tomography (PET)

- Coincidence detection of annihilation γs
- Usual isotope is ¹⁸F
- Usual tracer [¹⁸F]FDG (glucose analogue)

Nuclear Medicine therapy

Administration of cytotoxic radionuclides that themselves:

(a) target a disease process or (b) linked to targeting molecules (Molecular radiotherapy-MRT)

Examples of (a) radionuclides with affinity for target

1) For hyperthyroidism or medullary thyroid cancer [¹³¹I]: lodide specifically taken up by thyroid tissue

2) Bone metastasis ²²³Ra is a Ca²⁺ mimic – accumulates in bone adjacent to bone metastasis

Molecular radiotherapy (MRT)

Targeting receptors overexpressed on cancer with cytotoxic radionuclides

Emission	Range	LET	Examples (range in tissue)	Use
β	Up to 10 mm	low	¹⁷⁷ Lu (1mm), ¹⁹⁸ Au, ⁹⁰ Y (10mm)	MRT
α	Up to 100µm	high	²¹² Pb*, ²²³ Ra	MRT

Advantages

- 1) Systemic treats primary and metastasis
- 2) Low normal tissue dose (c.f. EBRT)
- 3) Easy to administer

MRT limitations

- 1) Cancer types
- Molecular radiotherapy currently limited to a few cancer types
- Cancers that universally express a receptor type: Lymphoma CD20, Prostate PSMA and neuroendocrine somatostatin receptor
- 2) Heterogeneous intra-tumour dose distribution
- Perfusion and receptor expression across tumours highly variable
- Use of a single radioisotope
- 3) Lack of accurate dosimetry to inform on dose

Approaches

- 1. Optimising molecular radiotherapy based on target distribution:
 - a. minimising tumour dose heterogeneity
 - b. selecting suitable radionuclides based for target

⁹⁰Y- high energy beta
most dose
deposited mm from atom

¹⁷⁷Lu – low energy beta emission – most dose deposited within 1mm

- 2. Theragnostic pair:
 - a) Particle with imaging radionuclide:
 - Biodistribution and dosimetry suitability of patient and tailored dose
 - b) Chemically identical particle with therapeutic radionuclide
- 3. Metal amalgams for radionuclide capture (single and multiple)

Pathway to identify optimal radioisotopes for MRT

• Implement pipeline

Theragnostics

- Imaging and treatment
- Enables dosimetry prior to delivery of therapeutic radionuclides

Chhabra and Thakur Biomedicines 2022

- Fabrication of gold nanoparticles
- ⁸⁹Zr positron emitter
- $^{198}Au \beta$ -emitter
- Collaboration: Fred Currell DCF University of Manchester Zeljka Krpetic University of Salford

Boosting radiotherapy to hypoxic bladder cancer cells

Target discovery on hypoxic cells using Mass spectroscopy

- Bladder cancer cell lines
- 21% O_2 vs 1% and 0.1% O_2 Mass spectrometry
- Candidate proteins 2X increase and p<0.05 in hypoxia
- Corroboration e.g. w.blot

Pimonidazole bladder cancer Hoskin et al Br J Cancer 2004

Suitability of α -emitters for targeting hypoxic cells

- Hypoxic regions: contiguous, focal and single cell within tumours
- Cell kill from most β -emissions due to crossfire at a distance
- The range of α -particles 1-4 cell diameters
- Kill cells to which the radionuclide is attached and nearby.
- Targeted therapeutic armed with an α -emitter (via ²¹²Pb)

Source of ²¹²Pb

- National Nuclear Laboratories (NNL), Mithras and RadNet (City of London) initiative to increase supply of medically relevant radionuclides
- ²¹²Pb from legacy nuclear 'waste'

Capturing single/multiple radionuclides using amalgams

Cu@Au self-assembled nanoparticles as SERS-active substrates for (bio)molecular sensing

Gema Cabello ^{a, *}, Kenneth C. Nwoko ^b, José F. Marco ^c, María Sánchez-Arenillas ^c, Ana María Méndez-Torres ^d, Jorg Feldmann ^b, Claudia Yáñez ^d, Tim A.D. Smith ^{a, **}

- Amalgams of gold and copper for carrying therapeutic ^{198/199}Au and imaging ^{67/64}Cu radionuclides
- Ideal size (<5nm) renal excretion
- Explore other metal/amalgams particles to capture medically useful radionuclides

Auger emitters

Short range (<10μm) Very high LET Is cytotoxic efficacy related to nuclear accumulation? DESIGN Cell nucleus ¹²⁵I-IUdR Cytoplasm ¹²⁵I-IAZA Cell surface ¹²⁵I-Iabelled antibody

lodide di in cell may be a problem

Ag – high affinity for iodide Location modification using Ag nanoparticle-membrane penetrating peptides

Collaborations

- Neutron bombardment of metal foils e.g. for production of ¹⁹⁸Au
 Birmingham University
- Proton bombardment
 - DCF University of Manchester
- Funding partners